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Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited
aggregation(DLA ) in two dimensions. The harmonic measure of the growth probability for DLA can be
conformally mapped onto a constant measure on a unit circle. Here we mapm preferred directions for growth
to a distribution on the unit circle, which is a periodic function withm peaks inf−p ,pd such that the angular
width s of the peak defines the “strength” of anisotropyû=s−1 along any of them chosen directions. The two
parameterssm,ûd map out a parameter space of perturbations that allows a continuous transition from DLA
(for small enoughû) to m needlelike fingers asû→`. We show that at fixedm the effective fractal dimension
of the clustersDsm,ûd obtained from mass-radius scaling decreases with increasingû from DDLA .1.71 to a
value bounded from below byDmin= 3

2. Scaling arguments suggest a specific form for the dependence of the
fractal dimensionDsm,ûd on û for largeû which compares favorably with numerical results.
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I. INTRODUCTION

Nonequilibrium growth models leading naturally to self-
organized fractal structures, such as diffusion-limited aggre-
gation (DLA ) [1], have attracted a great deal of interest in
recent years, not only due to their relevance for various
physical processes, for example dielectric breakdown[2],
electrochemical deposition[3,4], and two-fluid Laplacian
flow [5], but also because such harmonic growth leads natu-
rally to one of the most interesting multifractal distributions
found in nature[6,7].

A powerful method for studying such two-dimensional
growth processes is the iterated stochastic conformal map-
ping [8–10], which has already been successfully applied to
generate and analyze DLA[10,11] and Laplacian [12]
growth patterns in two dimensions. This has opened the road
to address many important questions related to pattern for-
mation in DLA, such as the structure of the multifractal spec-
trum of DLA [13], and provided the first definite answers for
how the hottest tips and the coldest fjords grow. Other topics
that can be investigated using iterated conformal maps in-
clude the pinning transition in Laplacian growth[14], the
difference between Hele-Shaw flows and DLA[15], as well
as new topics such as the scaling of fracture surfaces formed
during quasistatic cracking[16].

One of the important questions addressed soon after the
original discovery of DLA by Witten and Sander[1] was that
of the effect of the intrinsic anisotropy in lattice models on
the shape and fractal dimension of the asymptotic aggregates
[17–21]. For two-dimensional growth, it was shown that the
result of such anisotropy in the microscopic attachment prob-
ability leads to clusters which asymptotically have the sym-

metry of the underlying lattice(following the argument in
Ref. [17], this actually holds formø6, wherem represents
the coordination number of the lattice), and the fractal di-
mension of the resulting aggregate asymptotically ap-
proaches3

2. These results have also been confirmed in recent
work which used iterated stochastic conformal mapping
techniques to grow the clusters[22].

In the present work we use iterated stochastic conformal
mapping techniques to study DLA withm preferred direc-
tions for growth. Although this naturally leads to anisotropic
clusters, the present model is fundamentally different from
the previous studies on lattice anisotropy. Our model is rather
related to the existence of a large-scale imposedm-fold sym-
metry whose strength can be tuned. Specifically let us con-
sider the case when the harmonic measure for DLA is
weighted at anglec between the seed and the location for
growth by a termWsc ;m,sd, wheres specifies the angular
width of the preferred direction. Such a weighting
Wsc ;m,sd,expf−bHsc ;m,sdg could be due to an im-
posed external field or to growth on a surface which has an
m-fold symmetry. An example would be dendritic growth in
a strip [20] which can be argued to lie in them=1 or m=2
universality class, the anisotropy increasing as the strip is
narrowed.

The organization of the paper is as follows. In Sec. II we
describe how we use conformal mapping methods together
with an angle-dependent probability for growthPsu ;m,ûd to
study a model corresponding to a real-space weighting
Wsc ;m,sd. Hereu is the angle parametrizing the unit circle
to which the boundary of the growing cluster is conformally
mapped,m is the number of the privileged directions, andû
is an appropriate measure for the “strength” of the aniso-
tropy. In Sec. III we present results for the morphology of the
resulting patterns as a function ofm and û for specific
choices of the modulationPsu ;m,ûd, and using scaling ar-
guments we show that for largeû the effective fractal dimen-
sion Dsm,ûd of the emerging clusters satisfies a scaling re-
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lation. We conclude with a discussion of the results in
Sec. IV.

II. MODEL AND THEORETICAL BACKGROUND

In the DLA model proposed by Witten and Sander[1], the
growth of a cluster from a seed placed at the origin proceeds
by irreversible attachment of random walkers released from
infinity (in practice, from far away from the cluster’s bound-
ary). Thus the probabilityPssd for growth at any points
along the cluster boundary of total lengthL is a harmonic
measure and can be writtenPssd= u¹Vssdu /e0

Lds8u¹Vss8du,
where Vsr d is a potential which outside the cluster obeys
Laplace’s equation¹2V=0 subject to the boundary condi-
tions V=0 on the(evolving) boundary of the cluster andV
, ln r as r →` (corresponding to a uniform source of par-
ticles far away from the cluster). In two dimensions, this
formulation as a potential problem has been recently ex-
ploited for studying the time development of DLA based on
conformal mapping techniques[8,10].

As discussed in detail in[8,10], the basic idea is to follow
the evolution of the conformal mappingFsndsvd of the exte-
rior of the unit circle in a mathematicalv plane onto the
complement of the cluster ofn particles in the physicalz
plane rather than directly the evolution of the cluster’s
boundary. The equation of motion forFsndsvd is determined
recursively[see Fig. 1(a)]. With an initial condition corre-
sponding to the unit circle in the physical planeFs0dsvd=v,
the process of adding a new “particle” of constant shape and
linear scaleÎl0 to the cluster ofsn−1d “particles” at a posi-
tion s chosen according to the harmonic measure is per-
formed using an elementary mappingfl,usvd,

fl,0svd = v1−aH s1 + ld
2v

s1 + vdF1 + v + vS1 +
1

v2

−
2

v

1 − l

1 + l
D1/2G − 1Ja

,

fl,usvd = eiufl,0se−iuvd, s1d

which conformally maps the unit circle to the unit circle with
a bump of sizeÎl localized at the angular positionu [8]. The
parametera describes the shape of the elementary mapping;
following the analysis in [10], we have useda=0.66
throughout this paper as we believe the large-scale
asymptotic properties will not be affected by the microscopic
shape of the added bump. As shown diagrammatically in Fig.
1(a), the recursive dynamics can than be represented as itera-
tions of the elementary bump mapfln,un

svd, resulting in the
representation of the conformal mapz=Fsndsvd at the nth
stage of growth as

Fsndsvd = fl1,u1
+ fl2,u2

+ ¯ + fln,un
svd, s2d

where the angleunP f−p ,pd at stepn is randomly chosen
because the harmonic measure on the real cluster translates
to a uniform measure on the unit circle in the mathematical
plane, i.e.,

Pssdds=
du

2p
. s3d

Equation(3) is crucial to the successful implementation of
the iterated conformal method as the highly nontrivial har-
monic measure in the physical plane becomes uniform in the
mathematical plane. Finally,

ln =
l0

ufFsn−1dg8seiundu2
s4d

is required in order to ensure that the size of the bump in the
physicalz plane isÎl0. We note that in the composition Eq.
(2) the order of iterations is inverted—the last point of the
trajectory is the inner argument, therefore the transition from
Fsndsvd to Fsn+1dsvd is achieved by composing then former
maps Eq.(2) starting from a different point.

Consider the case where the existence ofm preferred di-
rections in physical space modulates the harmonic measure

FIG. 1. (a) Diagrammatic representation of the mappingsF and
f. (b) Change in shape of the probability distributionGsj ;m,kd,
Eq. (6), with increasingk for m=3.
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at any point s on the boundary by a probability
P(cssd ;m,s)=W(cssd ;m,s) /e0

Lds8Wscss8d ;m,sd. Here,
cssd is the angle parametrization of the cluster boundary in
the physical space,Wsc ;m,sd is the modulating weight, and
the m-fold periodicity implies Psc+2p /m;m,sd
=Psc ;m,sd. The important question isif the weighting
Wsc ;m,sd in the real space may be represented in the form
of a modulation of the constant measure in the mathematical
planePmathsuddu=du /2p. Because the anglec is not invari-
ant under the conformal mapz=Fsndsvd, an answer to the
question above is not straightforward. Considering an en-
semble of clusters generated under the influence of the same
modulation Psc ;m,sd, for each cluster ofn particles
c maps onto a different unscd, where expsicd
=Fsnd(expsiund) / uFsnd(expsiund)u. It is reasonable to assume
that averaging over the many patterns above, an asymptoti-
cally sn→`d scale invariant average pattern will appear. For
DLA, i.e., in the absence of modulation, this pattern is a
circle; in the general case, anm-fold periodic pattern with the
same symmetry as the modulation is expected to appear.
Therefore, we expectkunscdl= fmscd, wherek¯l denotes an
average over clusters, withfmscd independent ofn and sat-
isfying fmsc+2p /md= fmscd+2p /m (for largen) due to the
symmetry of the resulting averaged pattern and to the fact
that fm is an angle[23]. It then follows that the modulated
probability distribution on the unit circle leading to such
m-fold symmetry patterns obeys

Pmathsud = P„fm
−1sud;m,s…dfm

−1sud/du. s5d

Thus, we can see that for this casePmathsud is itself anm-fold
periodic function on the unit circle with peaks at the pre-
ferred directionsuk=2pk/m.

In this paper, rather than attempting to derive a specific
Pmathsud using Eq. (5), we shall directly assume such an
m-fold periodic measure on the unit circle(which, based on
the arguments above, is expected to lead to anm-fold sym-
metry weighting functionW in the physical space) and study
the clusters created using the choicePmathsud=Gsu ;m,ûddu,
where the parameterû is an appropriate measure for the
strength of selection of the preferred direction in the physical
plane. The angle-dependent probability distribution on the
unit circle Gsu ;m,ûd will be normalized such that
e−p

p du Gsu ;m,ûd=1. Such a distribution biases the choice of
the locationu, and thuss, where growth occurs as follows.
At stepn, the points for the attempt of growth is chosen, as
before, based on the harmonic measure, i.e., one chooses
pointsunP f−p ,pd on the unit circle with uniform distribu-
tion. But growth ats is only allowed with a probability
Gsun;m,ûd. If the attempt is rejected, then the previous se-
quence is repeated until a successful trial occurs. It thus fol-
lows that a natural choice for the parameterû is the inverse
of the width of the peaks ofG since the largerû is, i.e., the
narrower the peaks ofG are, the stronger is the angular se-
lectivity. We note that obviouslyGsu ;m,ûd=const corre-
sponds to usual DLA, while an explicit dependence onu
models the existence of privileged directions. Therefore, the
pair sm,ûd defines a two-dimensional parameter space for

the analytic study of applied anisotropy to DLA.
Because at this stage we are interested in the general fea-

tures of such a model of anisotropic growth, and not in trying
to model a specific physical system, we shall make for
Gsu ;m,ûd the simple choice

Gsu;m,kd =
1

Cskd
UcosSm

2
uDUk

,

u P f− p,pd,mP N,k P R+, s6d

where

Cskd =

4ÎpGS3

2
+

k

2
D

s1 + kd GS1 +
k

2
D

is the normalization constant(note that it does not depend on
m). It is easy to see thatGsu ;m,kd defined above has all the
key properties required: form.0 it is a periodic function of
u of principal period 2p /m, and thus the numberm of peaks
of Gsu ;m,kd in f−p ,pd corresponds to the number of privi-
leged directions; obviously, for this particular choice bothk
=0 independent ofm andm=0 independent ofk correspond
to isotropic DLA growth. At givenm, the exponentk.0
allows the continuous tuning of the width and height of the
peaks, i.e., the largerk is, the narrower and higher are the
peaks ofGsu ;m,kd [see Fig. 1(b)]. Thus in this casek is also
a good measure for the “strength” of selectivity, and we shall
use eitherk or û (which is uniquely determined bym andk,
see cf. Sec. III) as the “anisotropy strength.”

Though the choice given by Eq.(6) is arbitrary, we be-
lieve that because of universality the key features will be
independent of the specific form of the functionGsu ;m,ûd,
and thus most of the results presented in the next section will
refer toGsu ;m,kd. However, as a simple check we have also
tested a significantly different choice forGsu ;m,ûd,

G̃su;m,«d

=
1

m«51, u P F2p

m
j −

«

2
,
2p

m
j +

«

2
G ù f− p,pd, j P N

0 otherwise,

s7d

i.e., the union ofm rectangular, equidistant peaks of width
«ø2p /m (thus decreasing« corresponds to increased angu-
lar selectivity). In this case, the width« is independent ofṁ
(in contrast to the choiceG above), the limiting case of DLA
growth is obtained for«=2p /m, andû=«−1 is obviously the
natural choice for the “anisotropy strength.”

III. RESULTS AND DISCUSSION

The model described in Sec. II was simulated as follows.
The parameterl0=10−3 was fixed because it is just setting
the microscopic area of an added “particle.” Considering for
the moment the modulationG, Eq. (6), for fixedm andk, the
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growth stepn proceeds by selecting at random(uniform
probability) an angleuP f−p ,pd, then comparingGsu ;m,kd
with a random numberr uniformly distributed inf0,1/Cskdd;
if r ,Gsu ;m,kd, thenun=u, ln follows from Eq.(4), and the
new mapFn follows from Eq. (2); if not, the previous se-
quence is repeated until a successful trial occurs. All the
averages mentioned below were done over 100 clusters
grown up to sizeN=20 000. A similar procedure has been

applied in the case of the modulationG̃, Eq. (7), the only
difference being that in this case the random numberr is
chosen uniformly distributed inf0,m«d (for fixed m and«).

An example of clusters with different symmetries(i.e.,
different valuesm) grown using the modulationG is shown
in Fig. 2(a), while Fig. 2(b) depicts the morphology with
increasing anisotropy “strength”(i.e., different valuesk at
fixed m).

It can be seen that the bias introduced by the distribution
Gsu ;m,kd is indeed producing clusters with the correspond-
ing m-fold symmetry and that it is very effective: even for
small valuesk, the clusters in Fig. 2(a) show a clear three-

fold, and fourfold symmetry, respectively. Increasingk (the
strength of the anisotropy) leads to a significant reduction in
the branched structure of the cluster, thus in the thickness of
the surviving branches, as shown in Fig. 2(b). Similar results
have been obtained for all the values 2ømø7 and 1øk
ø80 that have been tested, and similar conclusions hold for

the caseG̃su ;m,«d for the tested values 2ømø6 and 0.1
ø«ø2p /m.

The results shown in Fig. 2 suggest that the resultant pat-
terns have a fractal morphology that depends onm andk, and
in order to characterize these shapes we shall focus on the
effective fractal dimensionDsm,kd obtained from the mass-
radius scaling. Following the arguments in Ref.[10], the
coefficient F1

snd=pi=1
n s1+lida in the Laurent expansion of

Fsnd,

Fsndsvd = F1
sndv + F0

snd + F−1
sndv−1 + F−2

sndv−2 + ¯ , s8d

is a typical length scale of the cluster; thus, a natural choice
for the radius of then-particle cluster isR,F1

snd. Assuming
that for n@1 a scaling law of the form

F1
snd , n1/Dsm,kd s9d

is found, the effective fractal dimension of the cluster can be
extracted from a power-law fit to the numerical data. We note
in passing that this scaling law was used in Ref.[10] as a
very convenient way to measure the fractal dimension of the
growing DLA cluster. As we have anticipated, for all the
valuesm andk the numerical results for the average coeffi-
cient F1

snd show a power-law dependence on the sizen, an
example being shown in Fig. 3(a), and the resultsDsm,kd
obtained from the power-law fit to the data in the rangen
ù103 are shown in Fig. 3(b).

It can be seen thatDsm,kd decreases with increasingk at
fixed m (and with increasingm at fixed k), and there is a
certain tendency for saturation at largek. We note that, as
expected,Dsm,0d.DDLA and that the curvesDsm,kd are all
above the expected lower limitDmin=3/2 [17]. An exception
is the casem=7 (results not shown), where for largek the
valuesDs7,k@1d.1.45 are somewhat belowDmin, but this
is most probably due to either insufficient statistics(too few
clusters), as suggested also by the noisiness of theDsm,kd
curves, or to the fact that in this particular case the sizeN
=20 000 is not sufficient to obtain an asymptotic cluster.
Again, similar results hold for the case in which the modu-

lation G̃su ;m,«d has been used, the only difference being
that now Dsm,«=2p /md.DDLA replaces the relation
Dsm,k=0d.DDLA above.

In order to understand these results theoretically we shall
use a simple argument, following Ref.[17], based on the
assumptions that(a) for large û the growth of the cluster
occurs mainly at the tips of them principal branches, and(b)
the envelope of theaveragecluster can be approximated by
m diamond shaped polygons, like the one shown in Fig. 4(a),
of opening anglesg andb (in general, these angles depend
on bothm andû) and with edges of lengths in the order ofR
(the radius of the cluster).

FIG. 2. (Color online) Typical clusters(sizeN=20 000) grown
using the modulationGsu ;m,kd with (a) m=3, 4, fixedk=3, and(b)
fixed m=6, but different values fork, k=1, andk=10, respectively.
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Under these assumptions, the rate of growth can be writ-
ten as[17]

dN/dR, Rp/s2p−bd. s10d

Because the left-hand side of Eq.(10) is ,RDsm,ûd−1, once the
anglebsm,ûd is known,Dsm,ûd can be determined from

Dsm,ûd = 1 +
p

2p − bsm,ûd
. s11d

Simple geometry[see the schematic drawing in the top right
corner of Fig. 4(a)] allows one to write[under the assump-
tion that the anglesgsm,ûd andbsm,ûd are small, which is
certainly true for largeû andm],

g

2
=

d

R− r
,

b

2
=

d

r
⇒ b =

R− r

r
g. s12d

On the other hand, following the arguments in Sec. II, the
opening angleg is determined by the decay of the probabil-
ity for growthGsu ;m,ûd, and therefore it can be estimated as
being equal to the width of the peak of the distribution. For

G̃, this is simply«, and thus in this caseû=1/«=1/g. For
the case of the modulationG, working with the peak cen-
tered atu=0, assuming largek and smallg, the width at half
peak probability su=g /2d is given by 1/2<f1
−smg /4d2/2gk<1−ksmg /4d2/2. Thus, in this casegsm,kd
<4/mÎk and a good choice forû is û=mÎk.

From Eq.(12) it then follows that

FIG. 3. (a) AverageF1
snd as a function ofn for clusters grown

with k=1, 10, 40, and 80, respectively, and fixedm=6 (log-log
plot). Also shown (dashed lines) are both the limit caseF1

snd

,n1/DDLA (DLA cluster), where DDLA =1.71, and the proposed
lower bound for anisotropic DLA growth,F1

snd,n1/Dmin, where
Dmin=3/2 [17]. (b) The effective fractal dimensionDsm,kd, ob-
tained fromF1

snd,n1/Dsm,kd, as a function ofk at fixedm. The points
represent the measured values, the lines are just a guide to the eye.
The results in both(a) and (b) correspond to the modulation
Gsu ;m,kd.

FIG. 4. (Color online) (a) Superposition of 10 different clusters
of sizeN=105 grown with the modulationGsu ;m,kd, the samem
=3 andk=1, but different sequences of random numbers. The dot-
ted diamond around the arm centered atc=0 shows the approxi-
mation for the envelope of one arm of the cluster, and the drawing
in the upper right corner shows schematically the geometry of the
diamond.(b),(c) Numerical results forsD−1d / s2D−3d as a function
of the scaling variableû=mÎk (for modulation functionG) and x

=«−1 (for modulation functionG̃), respectively. The dashed lines
are just a guide to the eye for the linear behavior in the range of
small and large values ofû, respectively.
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bsm,ûd .
sR− rd

rû
=

C1

û
, s13d

where C1 is a constant ofOs1d. Combining Eqs.(11) and
(13), one thus obtains the following scaling relation for the
fractal dimension:

Dsm,ûd − 1

2Dsm,ûd − 3
=

p

C1
û. s14d

Note that it is immediately apparent from Eq.(14) that
Dmin= 3

2, while for largeû the ratio sD−1d / s2D−3d should
be a linear function of the productmÎk only, providedmÎk
@1 in the case of the modulationG, and a linear function of

«−1 only (independent ofm) in the case of the modulationG̃,
respectively. This prediction can be tested against the nu-
merical results. As shown in Figs. 4(b) and 4(c), the data
collapse is excellent in both cases and the function is indeed
linear whenû@1. Surprisingly, the scaling predicted by Eq.
(14) seems to hold down to quite small values ofû, although
these results are beyond the scope of our scaling arguments.

IV. CONCLUSIONS

Using iterated stochastic conformal maps, we have stud-
ied the patterns emerging from a model of anisotropic(in the
sense of the existence of privileged radial directions for
growth) diffusion-limited aggregation in two dimensions. In
our model, the anisotropy was introduced via a probability
distribution for growth with a numberm of peaks in
f−p ,pd, the width of a peak being a tunable parameter that
allows a continuous transition from isotropic DLA growth to
anisotropic clusters. We have shown numerical evidence that

at fixed m the effective fractal dimension of the clusters
Dsm,ûd obtained from the mass-radius scaling decreases
with increasing anisotropy strengthû from DDLA to values
bounded from below byDmin= 3

2. Using simple approxima-
tions(supported by numerical results) for the envelope of the
cluster and general scaling arguments, we have derived a
scaling law involving Dsm,ûd and successfully tested it
against numerical results.

Although the model we have proposed is very simple, it
has the advantage that it seems to capture most of the general
features of an anisotropic growth process while still allowing
for an analytical treatment(to a certain degree). Finally, we
note here that a system for which the proposed geometry
may be easily experimentally achieved is the growth of bac-
terial colonies. For such a case, the radial anisotropy can be
experimentally obtained through the addition of nutrients
along the privileged directions, and controlled through the
excess concentration of nutrients along these directions with
respect to the rest of the substrate. For the data analysis, the
parameterm can be easily determined by visual inspection of
the experimental clusters(if it is not a priori known), while
the anisotropy strengthû can be determined by measuring
the angular openingg of a branch(care must be taken be-
cause at largeû, i.e., where our scaling arguments apply, this
angular opening is expected to be very small). Such an ex-
periment would allow a direct testing of all our numerical
and analytical predictions.
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