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Anisotropic diffusion-limited aggregation
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Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited
aggregation(DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be
conformally mapped onto a constant measure on a unit circle. Here wenrpagferred directions for growth
to a distribution on the unit circle, which is a periodic function withpeaks in[—, 7) such that the angular
width o of the peak defines the “strength” of anisotropyo~! along any of then chosen directions. The two
parametergm, ») map out a parameter space of perturbations that allows a continuous transition from DLA
(for small enoughx) to m needlelike fingers ag— «. We show that at fixedh the effective fractal dimension
of the clusterdD(m, ) obtained from mass-radius scaling decreases with increasfrgm Dp o =1.71t0 a
value bounded from below bymng. Scaling arguments suggest a specific form for the dependence of the
fractal dimensiorD(m, ») on x for large » which compares favorably with numerical results.
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[. INTRODUCTION metry of the underlying latticgfollowing the argument in
o . Ref. [17], this actually holds fom=6, wherem represents
Nonequilibrium growth models leading naturally to self- the coordination number of the latticeand the fractal di-
organized fractal structures, such as diffusion-limited aggremension of the resulting aggregate asymptotically ap-
gation (DLA) [1], have attracted a great deal of interest inproaches’. These results have also been confirmed in recent
recent years, not only due to their relevance for variousyork which used iterated stochastic conformal mapping
physical processes, for example dielectric breakdd@h  techniques to grow the clustef22].
electrochemical depositiofi3,4], and two-fluid Laplacian In the present work we use iterated stochastic conformal
flow [5], but also because such harmonic growth leads natunapping techniques to study DLA witm preferred direc-
rally to one of the most interesting multifractal distributions tions for growth. Although this naturally leads to anisotropic
found in nature[6,7]. clusters, the present model is fundamentally different from
A powerful method for studying such two-dimensional the previous studies on lattice anisotropy. Our model is rather
growth processes is the iterated stochastic conformal mapelated to the existence of a large-scale impasedld sym-
ping [8-10, which has already been successfully applied tometry whose strength can be tuned. Specifically let us con-
generate and analyze DLA10,1] and Laplacian[12]  sider the case when the harmonic measure for DLA is
growth patterns in two dimensions. This has opened the roagieighted at angles between the seed and the location for
to address many important questions related to pattern fogrowth by a termW(¢; m, o), whereo specifies the angular
mation in DLA, such as the structure of the multifractal spec-ywidth of the preferred direction. Such a weighting

trum of DLA[13], and provided the first definite answers for w(y; m, o) ~ exd ~BH(;m,o)] could be due to an im-
how the hottest tips and the coldest fjords grow. Other topiCosed external field or to growth on a surface which has an
that can be investigated using iterated conformal maps ifm fold symmetry. An example would be dendritic growth in
clude the pinning transition in Laplacian growth4], the 5 strip[20] which can be argued to lie in the=1 or m=2
difference between Hele-Shaw flows and DE¥], as well  ynjversality class, the anisotropy increasing as the strip is
as new topics such as the scaling of fracture surfaces formegh rowed.
during quasistatic crackinfl6]. The organization of the paper is as follows. In Sec. Il we
‘One of the important questions addressed soon after thgescribe how we use conformal mapping methods together
original discovery of DLA by Witten and Sandg] was that  \yith an angle-dependent probability for growg; m, x) to
of the effect of the intrinsic anisotropy in lattice models on study a model corresponding to a real-space weighting
the shape and fractal dimension of the asymptotic aggregatg - m, ). Here ¢ is the angle parametrizing the unit circle
[17-2]. For two-dimensional growth, it was shown that the ¢, \hich the boundary of the growing cluster is conformally
re;glt of such anisotropy |n.the microscopic attachment pmbfnappedm is the number of the privileged directions, and
ability leads to clusters which asymptotically have the sym-¢ 4, appropriate measure for the “strength” of the aniso-

tropy. In Sec. Ill we present results for the morphology of the
resulting patterns as a function of and » for specific

*Electronic address: popescu@mf.mpg.de choices of the modulatio(#;m, »), and using scaling ar-
"Electronic address: phshgeh@physics.emory.edu guments we show that for largethe effective fractal dimen-
*Electronic address: phyff@emory.edu sion D(m, ») of the emerging clusters satisfies a scaling re-
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lation. We conclude with a discussion of the results in @—plane Z- plane
Sec. IV. /
¢n-1
Il. MODEL AND THEORETICAL BACKGROUND
) ™~
In the DLA model proposed by Witten and Sangig}, the \
growth of a cluster from a seed placed at the origin proceeds %
by irreversible attachment of random walkers released from (])
infinity (in practice, from far away from the cluster’s bound- \§

ary). Thus the probabilityP(s) for growth at any points

along the cluster boundary of total lengthis a harmonic d
measure and can be writteR(s)=|VV(s)|/ [5ds [VV(s')], n-1
where V(r) is a potential which outside the cluster obeys

Laplace’s equatiorV?V=0 subject to the boundary condi-
tions V=0 on the(evolving) boundary of the cluster and
~Inr asr—oo (corresponding to a uniform source of par-
ticles far away from the clustgrin two dimensions, this
formulation as a potential problem has been recently ex-
ploited for studying the time development of DLA based on
conformal mapping techniqug8,10].

As discussed in detail if8,10], the basic idea is to follow \
the evolution of the conformal mappinh™(w) of the exte- k=5
rior of the unit circle in a mathematicab plane onto the
complement of the cluster af particles in the physicat
plane rather than directly the evolution of the cluster’s
boundary. The equation of motion fd¥"(w) is determined
recursively[see Fig. 1a)]. With an initial condition corre-
sponding to the unit circle in the physical pla® ()=, k=0
the process of adding a new “particle” of constant shape anc l.
linear scale(\, to the cluster ofn-1) “particles” at a posi- -
tion s chosen according to the harmonic measure is per-
formed using an elementary mappidg 4 w), 075 : 0 ' 3

1+\ 1
(ﬁ)\’o(w):wl—a{%(l_}_w)|:1_|_w_|_w<1_FE (b) é:
FIG. 1. (a) Diagrammatic representation of the mappidysnd
1/2 a
21—\ _1 ¢. (b) Change in shape of the probability distributi@{(£; m, k),
wl+\ ' Eq. (6), with increasingk for m=3.

(@)

G(&; m, k)

b o) =€, o(e"w), () P(s)ds= de 3

which conforma_lly maps the unit circle to the unit circle with 2m
a bump of size/\ localized at the angular positiah[8]. The

parametem describes the shape of the elementary mappin Equation(3) is crucial to the successful implementation of

following the analysis in[10], we have useda=0.66 %he iterated conformal method as the highly nontrivial har-

. . monic measure in the physical plane becomes uniform in the
throughout this paper as we believe the large-scal phy P

asymptotic properties will not be affected by the microscopi(;?n athematical plane. Finally,

shape of the added bump. As shown diagrammatically in Fig. o

1_(a), the recursive dynamics can than be repres_ente_d as itera- An= W
tions of the elementary bump m‘mn,@n(w), resulting in the
representation of the conformal mag®™(w) at the nth
stage of growth as

(4)

is required in order to ensure that the size of the bump in the

physicalz plane isV\o. We note that in the composition Eq.
OV W)=y g odr g ° by o), (2) (2 the order of iterations is inverted—the last point of the

v e e trajectory is the inner argument, therefore the transition from

where the angled, e [-,7) at stepn is randomly chosen ®™(w) to @™V (w) is achieved by composing theformer

because the harmonic measure on the real cluster translatemps Eq(2) starting from a different point.

to a uniform measure on the unit circle in the mathematical Consider the case where the existencengfreferred di-

plane, i.e., rections in physical space modulates the harmonic measure
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at any point s on the boundary by a probability the analytic study of applied anisotropy to DLA.

P(g(s);m,a) =W(y{(s);m,0)/ [5dS W((s');m, o). Here, Because at this stage we are interested in the general fea-
Y(s) is the angle parametrization of the cluster boundary irtures of such a model of anisotropic growth, and not in trying
the physical spac&\(y; m, o) is the modulating weight, and to model a specific physical system, we shall make for
the mfold periodicity implies P(g+27/m;m,o)  G(6;m,x) the simple choice
=P(¢;m,o). The important question isf the weighting

k
W(;m, o) in the real space may be represented in the form G(6:mk) = 1 cos(mg> ,

of a modulation of the constant measure in the mathematical C(k) 2
planeP,,.{6)dd=d6/ 27. Because the angl¢ is not invari-

ant under the conformal map=®"(w), an answer to the 0 e[-mm,meNkeR,, (6)

question above is not straightforward. Considering an engnare
semble of clusters generated under the influence of the same

modulation P(¢;m,o), for each cluster ofn particles —

¥ maps onto a different 6,(y), where exfiy) 4\7TF<§ * 5)
=0 (explib,))/|®"(expiby)|. It is reasonable to assume C(k) = ”
that averaging over the many patterns above, an asymptoti- (1+k) F<1 + 5)

cally (n— ) scale invariant average pattern will appear. For

DLA, i.e., in the absence of modulation, this pattern is ajs the normalization constagtote that it does not depend on
circle; in the general case, amfold _peri(_)dic pattern with the m). It is easy to see thab(#;m,k) defined above has all the
same symmetry as the modulation is expected to appeatey properties required: fan>0 it is a periodic function of
Therefore, we expect,(1))="f(1), where(:--) denotes an g of principal period 2r/m, and thus the numben of peaks
average over clusters, with,(¢) independent of and sat-  of G(#;m,k) in [-, ) corresponds to the number of privi-
isfying f(+2m/m)=f. () +2m/m (for largen) due to the |eged directions; obviously, for this particular choice bkth
symmetry of the resulting averaged pattern and to the fact0 independent o andm=0 independent ok correspond
that f,, is an angle[23]. It then follows that the modulated to isotropic DLA growth. At givenm, the exponenk>0
probability distribution on the unit circle leading to such allows the continuous tuning of the width and height of the

m-fold symmetry patterns obeys peaks, i.e., the largdt is, the narrower and higher are the
peaks ofG(#;m,k) [see Fig. 1b)]. Thus in this casé& is also
Prat 0) = P(f(6);m, o) df 1 (6)/d. (5)  agood measure for the “strength” of selectivity, and we shall

use eithek or x (which is uniquely determined by andk,

Thus, we can see that for this cd&g,{ 0) is itself anm-fold see cf. Sec. I)l as the “anisotropy strength.”
periodic function on the unit circle with peaks at the pre- Though the choice given by E6) is arbitrary, we be-
ferred directionsg=2mk/m. lieve that because of universality the key features will be

In this paper, rather than attempting to derive a specifitndependent of the specific form of the functigfg; m, »),
Pma{(6) using Eq.(5), we shall directly assume such an and thus most of the results presented in the next section will
m-fold periodic measure on the unit ciraferhich, based on  refer toG(68; m,k). However, as a simple check we have also
the arguments above, is expected to lead tondiold sym-  tested a significantly different choice fG(6;m, x),
metry weighting functiolV in the physical spageand study 5
the clusters created using the choRg,{0) =G(6;m, »)d6, G(6;m,¢e)

where the parametex is an appropriate measure for the 5 5

strength of selection of the preferred direction in the physical 101, ge [_77 STy f] A[-mm)jeN
plane. The angle-dependent probability distribution on the =— m° 2 m° 2

unit circle G(0;m,») will be normalized such that © 0 otherwise,

JZ.d6 G(6;m, »)=1. Such a distribution biases the choice of @)

the location#, and thuss, where growth occurs as follows.

At stepn, the points for the attempt of growth is chosen, as i.e., the union ofm rectangular, equidistant peaks of width
before, based on the harmonic measure, i.e., one choosess27/m (thus decreasing corresponds to increased angu-
points 6, € [-, ) on the unit circle with uniform distribu- lar selectivity. In this case, the widtl is independent ofn
tion. But growth ats is only allowed with a probability (in contrast to the choic& above, the limiting case of DLA
G(6,;m, %). If the attempt is rejected, then the previous se-growth is obtained foe=27/m, and»=¢"" is obviously the
quence is repeated until a successful trial occurs. It thus folnatural choice for the “anisotropy strength.”

lows that a natural choice for the parameteis the inverse
of the width of the peaks of since the largek is, i.e., the
narrower the peaks df are, the stronger is the angular se-
lectivity. We note that obviouslyG(#;m,x)=const corre- The model described in Sec. Il was simulated as follows.
sponds to usual DLA, while an explicit dependence &n The parametek,=10"2 was fixed because it is just setting
models the existence of privileged directions. Therefore, théhe microscopic area of an added “particle.” Considering for
pair (m,x) defines a two-dimensional parameter space fothe moment the modulatioB, Eqg.(6), for fixed m andk, the

Ill. RESULTS AND DISCUSSION
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FIG. 2. (Color onling Typical clusters(size N=20 000 grown
using the modulatio®(8; m, k) with (a) m=3, 4, fixedk=3, and(b)
fixed m=6, but different values fok, k=1, andk=10, respectively.

growth stepn proceeds by selecting at randofaniform
probability) an anglef € [-r, ), then comparings(6; m, k)
with a random numbaer uniformly distributed in0,1/C(k));
if r<G(6;m,k), thend,=6, A\, follows from Eq.(4), and the
new map®, follows from EQq.(2); if not, the previous se-
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fold, and fourfold symmetry, respectively. Increasikgthe
strength of the anisotropyeads to a significant reduction in
the branched structure of the cluster, thus in the thickness of
the surviving branches, as shown in FigbR Similar results
have been obtained for all the valuessth=7 and 1=k
=80 that have been tested, and similar conclusions hold for

the caseG(6;m,e) for the tested values€m=6 and 0.1
<eg<2mw/m.

The results shown in Fig. 2 suggest that the resultant pat-
terns have a fractal morphology that dependsnandk, and
in order to characterize these shapes we shall focus on the
effective fractal dimensio®(m,k) obtained from the mass-
radius scaling. Following the arguments in REE0], the
coefficient F(l“):H{Ll(lH\i)a in the Laurent expansion of
q)(n),

PV () =FPVw+F +Fot+FYw2+ -+, (8)

is a typical length scale of the cluster; thus, a natural choice
for the radius of then-particle cluster i5R~F(l”). Assuming
that forn>1 a scaling law of the form

F(ln) — n1/D(m,k) (9)

is found, the effective fractal dimension of the cluster can be
extracted from a power-law fit to the numerical data. We note
in passing that this scaling law was used in Réf)] as a
very convenient way to measure the fractal dimension of the
growing DLA cluster. As we have anticipated, for all the
valuesm andk the numerical results for the average coeffi-
cient F(ln) show a power-law dependence on the sizean
example being shown in Fig.(8, and the result®(m,k)
obtained from the power-law fit to the data in the ramge
=10°% are shown in Fig. ®).

It can be seen thdd(m,k) decreases with increasirgat
fixed m (and with increasingn at fixed k), and there is a
certain tendency for saturation at largeWe note that, as
expectedD(m, 0) =Dp, 4 and that the curveB(m, k) are all
above the expected lower linit,,;,=3/2[17]. An exception
is the casem=7 (results not shown where for largek the
valuesD(7 ,k>1)=1.45 are somewhat belo@,,;,, but this
is most probably due to either insufficient statistitso few
clusters, as suggested also by the noisiness of Etien, k)

quence is repeated until a successful trial occurs. All theurves, or to the fact that in this particular case the $ize
averages mentioned below were done over 100 clusters20 000 is not sufficient to obtain an asymptotic cluster.
grown up to sizeN=20 000. A similar procedure has been Again, similar results hold for the case in which the modu-

applied in the case of the modulati@, Eq. (7), the only
difference being that in this case the random numbés
chosen uniformly distributed if0,me) (for fixed m ande).

An example of clusters with different symmetriése.,
different valuesm) grown using the modulatio® is shown
in Fig. 2a), while Fig. 2b) depicts the morphology with
increasing anisotropy “strength(i.e., different valuesk at
fixed m).

lation G(6;m,e) has been used, the only difference being
that now D(m,e=2m/m)=Dp, 5 replaces the relation
D(m,k=0)=Dp 5 above.

In order to understand these results theoretically we shall
use a simple argument, following Rgfl7], based on the
assumptions thata) for large » the growth of the cluster
occurs mainly at the tips of tha principal branches, anb)
the envelope of thaveragecluster can be approximated by

It can be seen that the bias introduced by the distributionm diamond shaped polygons, like the one shown in Hig),4
G(#;m,k) is indeed producing clusters with the correspond-of opening angleg and B (in general, these angles depend
ing m-fold symmetry and that it is very effective: even for on bothm andx) and with edges of lengths in the orderff

small valuesk, the clusters in Fig. @) show a clear three-

(the radius of the clustgr
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FIG. 4. (Color onling (a) Superposition of 10 different clusters
of size N=10° grown with the modulatiorG(¢;m,k), the samam
FIG. 3. (a) AverageF(ln) as a function ofn for clusters grown t:esc)i ZT::;id b;rtoﬂ'rf]f;rﬁqr: Z?rzusgr?t?reodtngdsok?;vczThzeg t';ii_dm'
with k=1, 10, 40, and 80, respectively, and fixed=6 (log-log . PP .
. o n mation for the envelope of one arm of the cluster, and the drawing
plot). Also shown (dashed lines are both the limit case~; . . .
~ oA (DLA clusten, where Dp =171, and the proposed in the upper right corner shows schematically the geometr){ of the
’ DLA™ =7 = diamond (b),(c) Numerical results fofD-1)/(2D-3) as a function

lower bound for anisotropic DLA growthF‘ln)fvnl’Dmiﬂ, where : ; ] . .
. . . of the scaling variablec=myk (for modulation functionG) and
Dinin=3/2 [17]. (b) The effective fractal dimensio®(m,k), ob- 1 9 . \ (~ ) ) X
=g+ (for modulation functionG), respectively. The dashed lines

tained fromF(l”)~n1’D(mvk), as a function ok at fixedm. The points st e 1o th for the linear batavior in the ran ]
represent the measured values, the lines are just a guide to the e;%? Just a guide to the eye for the linear behavio € range o
small and large values of, respectively.

The results in both(a) and (b) correspond to the modulation

(b) 4

G(6;m,k).
vy 6 B 6 R-r
. . T=——, —=-0B=—y. (12
Under these assumptions, the rate of growth can be writ- 2 R-r 2 r r
ten as[17]
dN/dR~ R™?™H), (100  On the other hand, following the arguments in Sec. Il, the

opening angley is determined by the decay of the probabil-
ity for growth G(0; m, »), and therefore it can be estimated as
being equal to the width of the peak of the distribution. For
T G, this is simplye, and thus in this case=1/¢=1/y. For

D(m,») = 1+m- (11)  the case of the modulatioB, working with the peak cen-

' tered atd=0, assuming largk and smally, the width at half

Simple geometrysee the schematic drawing in the top right peak  probability (#=vy/2) is given by 1/2<[1
corner of Fig. 4a)] allows one to writunder the assump- —(my/4)?/2]¥~1-k(my/4)?/2. Thus, in this casey(m,k)
tion that the angles(m, ») and 8(m, ») are small, which is ~4/mk and a good choice for is x=myk.
certainly true for largec andm], From Eq.(12) it then follows that

Because the left-hand side of B40) is ~R°(™*~1 once the
angleB(m, x) is known,D(m, ») can be determined from
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(R-1) C; at fixed m the effective fractal dimension of the clusters
B(m, ») = T (13)  D(m,x) obtained from the mass-radius scaling decreases
with increasing anisotropy strength from Dp 5 to values
where C; is a constant ofO(1). Combining Egs(11) and  bounded from below b)Dminzg. Using simple approxima-
(13), one thus obtains the following scaling relation for the tions(supported by numerical resulf®r the envelope of the

fractal dimension: cluster and general scaling arguments, we have derived a
scaling law involving D(m,x») and successfully tested it
Dim»-1 (14 ~ against numerical results.

Although the model we have proposed is very simple, it
o ) has the advantage that it seems to capture most of the general
Note that it is immediately apparent from E(l4) that  features of an anisotropic growth process while still allowing
Dmin=3, While for largex the ratio(D-1)/(2D~-3) should  for an analytical treatmerito a certain degreeFinally, we
be a linear function of the produatvk only, providedmvk  note here that a system for which the proposed geometry
> 1 in the case of the modulatid, and a linear function of may be easily experimentally achieved is the growth of bac-
¢~ only (independent o) in the case of the modulatig, ~ terial colonies. For such a case, the radial anisotropy can be

respectively. This prediction can be tested against the nigXPerimentally obtained through the addition of nutrients
merical results. As shown in Figs() and 4c), the data along the privileged directions, and controlled through the
) - - gxcess concentration of nutrients along these directions with

respect to the rest of the substrate. For the data analysis, the

parametem can be easily determined by visual inspection of

Ehe experimental cluste(d it is not a priori known), while

Rie anisotropy strengtlr can be determined by measuring

the angular opening of a branch(care must be taken be-

cause at large, i.e., where our scaling arguments apply, this
Using iterated stochastic conformal maps, we have studangular opening is expected to be very smaluch an ex-

ied the patterns emerging from a model of anisotrgpiche  periment would allow a direct testing of all our numerical

sense of the existence of privileged radial directions forand analytical predictions.

growth) diffusion-limited aggregation in two dimensions. In

our model, the anisotropy was introduced via a probability ACKNOWLEDGMENTS
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linear whensx> 1. Surprisingly, the scaling predicted by Eq.
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IV. CONCLUSIONS

[1] T. A. Witten, Jr. and L. M. Sander, Phys. Rev. Ledfz, 1400 Phys. Rev. E65, 036141(2002.
(1981). [15] H. G. E. Hentschel, A. Levermann, and |. Procaccia, Phys.

[2] L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Rev. E 66, 016308(2002.
Lett. 52, 1033(1984). [16] F. Barra, H. G. E. Hentschel, A. Levermann, and I|. Procaccia,

[3] R. M. Brady and R. C. Ball, Naturg.ondon) 309, 225(1984). Phys. Rev. E65, 045101(2002.

[4] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. [17] R. C. Ball, R. M. Brady, G. Rossi, and B. R. Thompson, Phys.
Sawada, Phys. Rev. Leth3, 286 (1984). Rev. Lett. 55, 1406 (1985; R. C. Ball, Physica A140, 62

[5] L. Paterson, Phys. Rev. Leth2, 1621(1984). (1986

[6] H. G. E. Hentschel and I. Procaccia, Physica8D435(1983. [18] P. Meakin, inPhase Transitions and Critical Phenomereal-

[7] T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. L%f}. ited by C. Domb and J. LebowitzAcademic, New York,
854 (1986. 1988, Vol. 12.

[8] M. B. Hastings and L. S. Levitov, Physica D16, 244 (1998. [19] J. P. Eckmann, P. Meakin, I. Procaccia, and R. Zeitak, Phys.

[9] M. B. Hastings, Phys. Rev. B5, 135(1997). Rev. A 39, 3185(1989; Phys. Rev. Lett.65, 52 (1990.

[10] B. Davidovitch, H. G. E. Hentschel, Z. Olami, I. Procaccia, [20] A. Arneodo, F. Argoul, Y. Couder, and M. Rabaud, Phys. Rev.
L. M. Sander, and E. Somfai, Phys. Rev.99, 1368(1999. Lett. 66, 2332(1991).

[11] B. Davidovitch and I. Procaccia, Phys. Rev. Le85, 3608 [21] B. K. Johnson and R. F. Sekerka, Phys. Rev5E 6404
(2000. (1995.

[12] F. Barra, B. Davidovitch, A. Levermann, and |. Procaccia, [22] M. G. Stepanov and L. S. Levitov, Phys. Rev.@3, 061102
Phys. Rev. Lett.87, 134501(2002). (200D.

[13] M. H. Jensen, A. Levermann, J. Mathiesen, and |. Procaccia]23] In principle, f,, is defined up to an additive constant; this can
Phys. Rev. E65, 046109(2002. be fixed by specifically requiring that at the fingertips

[14 H. G. E. Hentschel, M. N. Popescu, and F. Family, =0,1,2,...m-1 of the pattern one h&s,(27j/m)=2mj/m.

061403-6



